If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+8n-16=0
a = 4; b = 8; c = -16;
Δ = b2-4ac
Δ = 82-4·4·(-16)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{5}}{2*4}=\frac{-8-8\sqrt{5}}{8} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{5}}{2*4}=\frac{-8+8\sqrt{5}}{8} $
| 259=214-v | | 3x-24=-6(-6x+4) | | 14+10x-3=17 | | 33=p+15 | | x+-3x=-2 | | 7+24x=35+17 | | 3(x-3)=4(x-10) | | 96.80=v+5.8 | | -3−10v=3−10v | | 3y=4-1.5 | | 43-4x=17+9x | | 3=4x-1.5 | | 3x-4(x-2)=-5 | | 20=d+1 | | 8t5t=25 | | 10.4=8.8a+1.6 | | 6x(2+5)=98 | | 80=10f | | X=11y-6 | | -4(3-n)=2n+6 | | 5x^2-10x-9=0 | | 91.80=91.8t | | 3x+4=8+11x | | 12w+18/4=4 | | 50k+60k=40k+80k | | 0,5c=80 | | 5=-2g+7 | | (x-25)^2=36 | | 80=0,5x | | 50k+60k=40k+8k | | 6t+6=7t-2 | | 7(p+5)-8p=-19+8p |